
UCRL-CONF-209020

build - A Directory Savvy
Replacement for Make

J. F. Reus

January 14, 2005

NECDC 2004
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Proceedings from the NECDC 2004

Reus, J.F.

build

A Directory Savvy Replacement for Make (U)

Jim Reus

reus@llnl.gov

Lawrence Livermore National Laboratory, Livermore, CA 94551

The build utility is presented as an alternative to make. It is very portable
and was designed with parallel operation from the start. Build extends the
traditional make model by extending the include facility to allow for
construction of dependency lattices that span directory trees. A number of
features provided by build support improved meta-project component
encapsulation giving improved project scalability. Build is generally
compatible with most make implementations and supports the extensive
macro function facility introduced by GNU make. (U)

Introduction
All but the most trivial software packages are generally constructed from multiple

source files with many steps being required to generate lexer and parser source files,
compile the numerous source files, assemble libraries from object files, and link object
files and libraries to form the binary executable application. During the development
process, the construction process may be repeated many times as source code is modified
requiring the application to be rebuilt. To address this problem the original make tool was
developed. However this tool was developed when applications were rather simple with a
limited number of source files in single directories. Few header files outside of the
standard system header files were used. The graph formed by the file-to-file dependencies
was generally simple with little cross branching and limited depth.

The increased complexity of modern software systems has made the traditional make
tool less capable of managing the problem. Good software development practices have
led to more and more source files arranged in directory hierarchies. Modular development
of the software has resulted in the proliferation of developer implemented header files and
libraries that are part of the application. Code reuse and object oriented design has made
the problem even worse by hiding the necessity to recompile source files. In short, the
dependency graph has become much more complex, less a tree and more lattice-like.
Keeping track of these dependencies rapidly becomes difficult with the increasing
complexity of the software. In addition the shear volume of source code has increased the

Proceedings from the NECDC 2004

Reus, J.F.

need to avoid unnecessary compiles or relinks. The increased number of source files to be
compiled has also increased the opportunity for parallelism but the increased complexity
of the directory hierarchy and file-file dependencies has at the same time made it harder
to exploit parallelism.

This paper gives a brief introduction to build – an improved implementation of make.
A number of common issues are presented that contrast how build and make are used. In
addition a number of new features provided by build are described. This presentation is
by no means a complete description of build; a separate document is available that serves
as a reference and user’s guide.

Build
Build is a tool intended as an alternative to make. It is a compatible replacement for

most make implementations and is a near superset of GNU make only lacking in a few of
GNU make’s special macro functions. One of the core requirements in the design of build
was compatibility with make. In addition to the facilities provided by most make
implementations build also:

• Understands projects with source in hierarchical directory trees.

• Implements a rich set of relationships such as:
o Dependency
o Inclusion
o Copy

• Properly supports parallel builds.

• Provides improved pattern rules (along with old style make suffix rules).

• Supports multi-target rules.

• Supplies a number of additional directives dealing with complex dependency
lattices and multiple products (goal objects).

In addition build is also:

• Scalable

• Compatible

• Fast and widely portable.

Note that since build is for the most part a superset of make, it will accept most well
written makefiles. In fact, if not told to use a specific input file, build will first look for a
file named Buildfile (or buildfile) and if that is not found will look for Makefile (or
makefile).

Proceedings from the NECDC 2004

Reus, J.F.

Directory hierarchies
As projects become increasingly complex, it is a good software engineering practice

to divide-up the multitude of source files into modules, one per directory, forming a
directory hierarchy. Build provides a number of features to deal properly with directory
hierarchies. At one point in its early development it was expected that a single buildfile
would manage a project even if it spanned multiple directories. Build simply understood
the relative pathnames in the rules. Such a scheme becomes rapidly unmanageable as the
number of source files increases and the directory structure grows. Users of make
generally use recursive makes – makefiles that contain rules that invoke make in the
subdirectory. However each invocation of make has only a local view; no one invocation
has the big picture. The only information flowing from make to make is the request to
make some target, and the success or failure of the request. This limitation of information
flow leads to unnecessary work and sometimes to missed work.

To get the big picture build supports an extended include mechanism to permit each
directory to have its own local buildfile dealing only with those issues local to the
directory. Build uses a new form of the familiar make-style include directive to collect the
various buildfiles. Build recognizes the position of each buildfile in the directory
hierarchy and so can relocate the contents of each buildfile appropriately. The result is a
global view assembled from buildfiles developed locally.

The difference between how one handles directory hierarchy using make and build:

• When using make the developer generally uses either a grand makefile that
understands the whole directory hierarchy (unmaintainable) or rules are added
to parent directories that invoke make in the subdirectory using a makefile
local to the subdirectory. For example:

makefile
al l :
 cd subdi r 1 ; make $@
 cd subdi r 2 ; make $@

cl ean :
 cd subdi r 1 ; make $@
 cd subdi r 2 ; make $@

i nst al l :
 cd subdi r 1 ; make $@
 cd subdi r 2 ; make $@

The trouble with recursive makes is that there is little information exchange
between the parent and child make. Each make is operating on its own. Make
has no understanding of the “big picture” .

• When using build the developer supplies a buildfile in the parent directory that
simply includes the buildfile in each of the subdirectories. This “parent”
buildfile generally has a few simple rules stating that certain general targets
depend on similar targets local to each of the subdirectories.

Proceedings from the NECDC 2004

Reus, J.F.

buildfile
SUB = subdi r 1 \
 subdi r 2

i ncl ude opt i onal r ul es $(SUB: =/ bui l df i l e)

al l : $(SUB: =/ al l)
c l ean : $(SUB: =/ cl ean)
i nst al l : $(SUB: =/ i nst al l)

By including all of the buildfiles the single build process has access to all of
the rules and can construct a more complete view of the relationships – the
dependencies. This allows build to understand the “big picture” .

A number of make implementations support a simple include mechanism that does
not provide for rule relocation or macro scope. Build’s include directive supports a
number of options that allow for better expression of the intent of the include operation.
There are generally two reasons for including a file: to import macro definitions common
to various parts of a complex project (shared definitions) and to import additional rules.
The first is an example of a simple include, the text of the included file is processed as
though it were part of the including file. This operation supported by both make and
build. The second is unique to build and is how build deals with directory hierarchy,
multiple products and encapsulation. By supporting the importation and relocation of
rules build permits a complex project to be partitioned into manageable chunks.

Relationships
One of the essential features of both makefiles and buildfiles is the expression of

dependency: Some target depends on a number of components. If the target doesn’ t exist
or is “out-of-date” with respect with any of its components then this target must be
remade. The commands associated with the target are executed to create or update the
target. The target-component relationship forms a partial ordering of these objects. Note
that any target may be a component of another target. When all of the various
relationships are considered a directed acyclic graph may be constructed. The method for
describing simple dependencies with build is similar to that used by make:

t ar get : component 1 component 2 … component N

This simple line states that target depends on component1, component2, and so on. It
represents the following directed acyclic graph:

 t ar get

component 1 component 2 component N …

Proceedings from the NECDC 2004

Reus, J.F.

Of course most applications require more than one rule. The following set of rules
describes an example program formed from two source files and a common header file:

exampl e : mai n. o f unct i ons. o

mai n. o : mai n. c f unct i ons. h

f unct i ons. o : f unct i ons. c f unct i ons. h

The above simple set of only three rules1 has resulted in a dependency graph that is no
longer a tree but a lattice:

Note that in the above graph exampl e is a root node as nothing depends on it. The
objects mai n. c , f unct i ons. c and f unct i ons. h are leaf nodes as they depend on
nothing. Finally main.o and functions.o are interior nodes. Unlike make, build
understands the structure of the dependency graph or lattice. In general build recognizes
that an object need only be made if it is out of date with respect to the leaves of its
downset. Objects represented by interior nodes are intermediate and are not always
needed. GNU make provides a directive to indicate that an interior node is an
intermediate and need not be made unless some target to be made requires it. Build
understands the intermediate nature of interior nodes directly from the structure of the
lattice.

Use of libraries complicates things further by increasing the depth of the tree. As a
first cut we’ ll just place the library source files in the same directory as the application
and add rules for constructing the library to the application’s buildfile:

exampl e : mai n. o f unct i ons. o l i bmi ne. a

mai n. o : mai n. c f unct i ons. h

f unct i ons. o : f unct i ons. c f unct i ons. h mi ne. h

l i bmi ne. a : cr eat e. o pr ocess. o dest r oy. o

cr eat e. o : cr eat e. c mi ne. h

pr ocess. o : pr ocess. c mi ne. h

dest r oy. o : dest r oy. c mi ne. h

1 The commands associated with the dependencies are not shown on many examples to save space.

 exampl e

mai n. o f unct i ons. o

mai n. c f unct i ons. h f unct i ons. c

Proceedings from the NECDC 2004

Reus, J.F.

This significantly complicates the dependency lattice:

As noted previously build will use its understanding of the dependency lattice to
avoid doing work where possible. For example, suppose only the source files exist.
Building example will result in everything being compiled and the library constructed and
the link being performed. This completely populates the tree. Now suppose the source file
create.c is modified. In order to reconstruct example build will only compile create.c,
rebuild the library and relink example. Now if only functions.h is modified then build will
only recompile main.c and functions.c and relink example. Finally if all the object files
and the library were deleted and build instructed to reconstruct example (which is still
there) then no work is done since build recognizes that example exists and is up-to-date
with all its source files (the leaves of the graph).

Placing the library in the same directory as the application is a rather poor practice.
The library should be placed in its own subdirectory. In addition it should have its own
buildfile. The application buildfile:

i ncl ude r ul es mi ne/ bui l df i l e

exampl e : mai n. o f unct i ons. o mi ne/ l i bmi ne. a

mai n. o : mai n. c f unct i ons. h

f unct i ons. o : f unct i ons. c f unct i ons. h mi ne/ mi ne. h

and the library buildfile (in the subdirectory):

l i bmi ne. a : cr eat e. o pr ocess. o dest r oy. o

cr eat e. o : cr eat e. c mi ne. h

pr ocess. o : pr ocess. c mi ne. h

dest r oy. o : dest r oy. c mi ne. h

Note that the library buildfile doesn’ t know or care what directory it is in. However
the application directory has to know where to find the library’s buildfile, the header file
and the library file itself.

exampl e

mai n. o f unct i ons. o

mai n. c f unct i ons. h f unct i ons. c

l i bmi ne. a

cr eat e. o pr ocess. o dest r oy. o

cr eat e. c pr ocess. c dest r oy. c mi ne. h

Proceedings from the NECDC 2004

Reus, J.F.

The structure of the dependency lattice is pretty much unchanged by this split, only
the pathnames of the library objects are different:

The pathnames have changed because build recognizes that these objects are from the
buildfile in the subdirectory, the rules were relocated appropriately. It should be noted
that we don’ t have to keep the library directory as a subdirectory of the application. It is
entirely possible that the library could become a product of its own. The only requirement
is that the application buildfile must “know” where to find the files mine.h and libmine.a
Generally such files are “ installed” in some public place. The application need only
include the library’s buildfile if we want to maintain a developer relationship between the
application and the library. The library’s buildfile could be modified to allow for the
installation of the header and library file:

l i bmi ne. a : cr eat e. o pr ocess. o dest r oy. o

cr eat e. o : cr eat e. c mi ne. h

pr ocess. o : pr ocess. c mi ne. h

dest r oy. o : dest r oy. c mi ne. h

/ usr / l ocal / l i b/ l i bmi ne. a : l i bmi ne. a

/ usr / l ocal / i ncl ude/ mi ne. h : mi ne. h

and the application buildfile modified appropriately:

i ncl ude mi ne/ bui l df i l e

exampl e : mai n. o f unct i ons. o / usr / l ocal / l i b/ l i bmi ne. a

mai n. o : mai n. c f unct i ons. h

f unct i ons. o : f unct i ons. c f unct i ons. h / usr / l ocal / i ncl ude/ mi ne. h

The change to the structure of the dependency lattice appears small but the

ramifications are significant. The library has been well isolated from the application and
may be moved freely. However build still has the big picture and can properly work with
both the application and the library when it has the source and buildfiles for. In addition

exampl e

mai n. o f unct i ons. o

mai n. c f unct i ons. h f unct i ons. c

mi ne/ l i bmi ne. a

mi ne/ cr eat e. o mi ne/ pr ocess. o mi ne/ dest r oy. o

mi ne/ cr eat e. c mi ne/ pr ocess. c mi ne/ dest r oy. c mi ne/ mi ne. h

Proceedings from the NECDC 2004

Reus, J.F.

build can properly deal with the application when only its source and buildfile are
available.

Note that the lattice shown above has been effectively partitioned at the dotted line
into two regions: the application objects and relations, and the library objects and
relations (each region corresponds to a buildfile). The regions are joined at the installed
objects: the header and the library files. The application region is a user of these and the
library creates them. Of course we really should allow for the specification of where the
library should be installed but this is really a matter of configuration scripting and build
macro processing2 and is a subject outside the scope of this paper.

Includes Relations
When a source file includes a header file there is an implied dependency. Consider the

following simple C source file eff.c:

#i ncl ude “ ef f . h”

i nt f (i nt i)
{ r et ur n –i ;
}

2 Build’s macro processing support is generally a superset of the mechanism provided by GNU make.

exampl e

mai n. o f unct i ons. o

mai n. c f unct i ons. h f unct i ons. c

mi ne/ l i bmi ne. a

mi ne/ cr eat e. o mi ne/ pr ocess. o mi ne/ dest r oy. o

mi ne/ cr eat e. c mi ne/ pr ocess. c mi ne/ dest r oy. c mi ne/ mi ne. h

/ usr / l ocal / l i b/ l i bmi ne. a

/ usr / l ocal / i ncl ude/ mi ne. h

Application

Library

Proceedings from the NECDC 2004

Reus, J.F.

The following makefile fragment supplies the relationship between the source file and
an object file that is produced by compiling the source file:

ef f . o : ef f . c
 cc –c ef f . c

How does the header file fit in? The source file eff.c doesn’ t depend on the header file
eff.h. Rather the object file depends on both eff.c and eff.h:

ef f . o : ef f . c ef f . h
 cc –c ef f . c

This isn’ t too hard to do even if many source files include the header file. But suppose
that someday the implementation of the header file eff.h is modified so that it includes
some other header file gee.h. When make is used one would have to modify every rule
with eff.h as a component adding gee.h as another component.

dee. o : dee. c ef f . h gee. h
 cc –c dee. c
 …

ef f . o : ef f . c ef f . h gee. h
 cc –c ef f . c

Looking at the makefile one might expect to find that dee.c … and eff.c include both
eff.h and gee.h but they don’ t. A developer might be tempted to “correct” the makefile to
reflect what is in the source files, removing an important dependency. Note that the
various source files such as dee.c and eff.c that include eff.h shouldn’ t have to “know”
that eff.h happens to include gee.h. Similarly the rules for compiling these source files
shouldn’ t need to know this either. It is a question of encapsulation. Suppose at some
future date the implementation of eff.h is changed to include cee.h rather than gee.h and
also include why.h. Having to track down and modify every rule that has eff.h as a
component is unreasonable.

To address this sort of situation, build supports a mechanism for indicating such an
includes relationship:

ef f . h i ncl udes gee. h

dee. o : dee. c ef f . h
 cc –c dee. c
 …

ef f . o : ef f . c ef f . h
 cc –c ef f . c

Now if the implementation of eff.h is changed to include cee.h rather than gee.h and
also include why.h, then rather than modifying every rule with eff.h as a component, one
need only change the single line to:

ef f . h i ncl udes cee. h why. h

Proceedings from the NECDC 2004

Reus, J.F.

In reality, the statement that dee.o depends directly on both dee.c and eff.h isn’ t really
correct. More accurately dee.o depends on dee.c and dee.c includes eff.h. So one could
write a buildfile:

ef f . h i ncl udes gee. h

dee. c i ncl udes ef f . h

dee. o : dee. c
 cc –c dee. c
 …

ef f . c i ncl udes ef f . h

ef f . o : ef f . c
 cc –c ef f . c

Note that in practice one would use a tool such as builddepends (like makedepends)
that analyzes source files of popular languages to detect include operations and to
generate an output file that contain the implied include relationships. One would then
include this file from the buildfile. In summary, given:

A. h i ncl udes B. h C. h

If some target depends on A.h then it also depends on B.h and C.h. The process exhibits
closure so given:

A. h i ncl udes B. h C. h
X. h i ncl udes A. h Y. h Z. h

If some target depends on X.h then it also depends on A.h, B.h, C.h, Y.h, and Z.h.

Parallelism
Build was designed from the start to support parallel operation. Several make

implementations such as GNU make and pmake also support parallel operation to some
degree. Note that for make or build, parallel operation doesn’ t mean constructing a
parallel code, it means executing the commands associated with targets in a parallel
fashion. Consider the following buildfile:

exampl e : mai n. o f unct i ons. o
 cc –o exampl e mai n. o f unct i ons. o

mai n. o : mai n. c f unct i ons. h
 cc –c mai n. c

f unct i ons. o : f unct i ons. c f unct i ons. h
 cc –c f unct i ons. c

The rule to produce main.o by compiling main.c and the rule producing functions.o by
compiling functions.c may be performed in parallel. Both compiles may done
simultaneously. This is because main.o doesn’ t depend on in any fashion, directly or
indirectly, functions.o (nor does functions.o depend on main.o). Note that the link can not

Proceedings from the NECDC 2004

Reus, J.F.

be done in parallel with the compiles since the executable file depends on the object files
and so can’ t be done until the object files have been constructed.

Both GNU make and pmake support parallelism in a single directory. If two or more
targets are in the same directory and do not depend on each other then they may be
constructed in parallel. They both support in-directory parallelism. Build supports general
parallelism: if any targets do not depend on each other (directly or indirectly) then they
may be constructed in parallel independent of directory. The only limit to parallelism for
build is dependency and availability of processors.

Another issue is the proper recognition of targets. Consider a library formed from a
large number of object files each the result of compiling a single source file. To keep
things maintainable the library is assembled in a “chunkwise” fashion.

l i bgor f o. a : : f i l e_1_1. o f i l e_1_2. o … f i l e_1_M. o
 ar csr $@ $?

l i bgor f o. a : : f i l e_2_1. o f i l e_2_2. o … f i l e_2_M. o
 ar csr $@ $?

 …

l i bgor f o. a : : f i l e_N_1. o f i l e_N_2. o … f i l e_N_M. o
 ar csr $@ $?

Note the use of the colon-colon operator (: :) in expressing the target-component
dependencies. This is a special notation supported by both make and build that permits a
given target to have multiple rules with commands. This is just what is needed in this
case as the library is a single target, and multiple rules are used to assemble the library
from subsets of the component object files.

This works just fine in serial with pretty much every implementation of make.
However when operating in parallel both GNU make and pmake don’ t understand that the
target found in each of the colon-colon rules is really the same target. For bookkeeping
reasons, make appears to treat each as an independent target3 and fair game for parallel
operation. When executed in parallel the ar commands try to produce the same file
simultaneously and the result is a corrupt library file4.

Build treats colon-colon rules in a different fashion. Each is treated as a separate rule
used to generate a single target by build. When a particular target is determined to be
nonexistent or out-of-date with respect to its components then each rule associated with
that target is performed one at a time in a serial fashion. Of course build will permit other
independent operations to be performed in parallel with this now serialized stream of
commands. In the end build properly supports colon-colon rules even when operating in
parallel.

3 Make really wants one rule with commands per target and fudges things internally to deal with the colon-colon rules.
4 The work-around generally used by the ALE3D team is to build in parallel. When the link eventually fails due to one
or more corrupt libraries the developer deletes all the libraries (leaving the object files) and re-runs the make in serial.
The idea is to compile in parallel but assemble libraries and link in serial.

Proceedings from the NECDC 2004

Reus, J.F.

Pattern Rules
In addition to the support build provides for old-style make suffix rules, build

supports two additional improved pattern rule mechanisms: one compatible with that
supported by GNU make and a file-globbing pattern notation familiar to shell users.

Old-style Suffix Rules
Most make implementations support a mechanism for describing rules for making

generic targets from generic components. Such rules are generally known as suffix rules.
For example: a suffix rule describing how to compile a generic C source file to produce
an object file could be:

. SUFFI XES: . c . o

. c. o:
 cc –c $<

While generally successful, few developers have been satisfied with the mechanism.
The scheme is fairly limited to dealing with targets and components with specified
suffixes (the file name extensions). There is no way of dealing with prefix-based rules or
other interesting patterns. Worse yet, the description scheme is particularly non-intuitive.
One has to use the special “ . SUFFI XES” target to register the target and component
suffixes. The suffix rule itself uses a special target assembled from the registered
component and target suffixes, and has no specified components:

Note how the suffix rule notation has target and component reversed when compared
to normal dependency notation (where target is on the left and components are on the
right). Not all make implementations support a notation for a suffix rule for generating a
target with no suffix (as is normal on UNIX-like systems). Some would support this as
the following:

. o:
 cc –o $@ $<

Note how the special target only has the component suffix. This is fine for the typical
situation where the expected target has no suffix and the component does, but what if the
target is to have a suffix and the expected component does not?

. c. o:
 cc –c $<

The component suffix

The target suffix

The matching component

Proceedings from the NECDC 2004

Reus, J.F.

GNU-style Pattern Rules
Like GNU make, build supports a stem notation system for describing how generic

targets are to be remade from generic components. In this scheme, the special character %
(percent sign) represents the parts of the names that match:

%. o : %. c
 cc –c $<

This notation is much more intuitive than the old style suffix rules as it follows the
target and component conventions established for normal rules. In addition, this
mechanism also supports prefixes:

% : s. %
 get $@

The above rule indicates how a file with any name may be derived from a file with the
same name prefixed with s. using the sccs get command. Both GNU make and build
support this form of pattern rule.

File-globbing Patterns
Users of most shells are familiar with wildcard-based patterns. These are formally

known as file-globbing patterns. Build supports file-globbing patterns in pattern rules. For
example a pattern rule for compiling a C source file:

* . o : $1. c
 cc –c $<

Note how the shell-like file-globbing pattern is used for the target on the left-hand
side of the dependency. On the right-hand side a Perl-like dollar-digit notation is used that
signifies the parts that matched. In the above example, the $1 is replaced with the string
that matched the first wildcard (the star). This scheme can be used to supply rules for
interesting (and potentially useful) situations. For example, the following pattern rule may
be used to compile C source files that start with a vowel (a, e, i, o, or u):

[aei ou] * . o : $1$2. c
 cc –c $<

While the example is contrived, one can see that this scheme may be quite useful for
defining pattern rules that compile some files (using particular options) and another
pattern rule for compiling other files (with different options). The possibilities are
intriguing. Reconsider the sccs example:

* . * : s. $1. $2
 get $@

File-globbing patterns are quite intuitive to developers on both UNIX- and Windows-
like platforms. Build supports Bourne-shell compatible file-globbing patterns on all
platforms.

Proceedings from the NECDC 2004

Reus, J.F.

Multi-Target Rules
Most commands used in rules generate a single file. For example: The C compiler

produces a single object file as its output. This is easily illustrated by a rule such as:
banana. o : banana. c
 cc –c banana. c

However a few commands produce multiple output files. For example: Parser
generators such as yacc, bison, or slr typically generate a .c and a .h file. This may be
shown in a buildfile by simply writing a rule with multiple targets such as:

par ser . c par ser . h : par ser . pda
 s l r par ser . pda

par ser . o : par ser . c par ser . h
 cc –c par ser . c

mai n. o : mai n. c par ser . h
 cc –c mai n. c

Many make implementations can’ t describe such a situation5. With these utilities the
developer has to ignore one of the targets while using the other even with other rules. For
example the above buildfile fragment would have to be written as:

par ser . c : par ser . pda
 s l r par ser . pda

par ser . o : par ser . c
 cc –c par ser . c

mai n. o : mai n. c par ser . c
 cc –c mai n. c

The makefile doesn’ t reflect reality: main.o doesn’ t really depend on parser.c, it really
depends on parser.h. The buildfile illustrates the real relationship.

Scalability
The local nature of buildfiles tends to support scalability. Each buildfile can generally

be created and maintained independently. While the overall dependency lattice grows in
complexity with each additional buildfile, the complexity of the individual buildfiles
remains rather low. Each buildfile only needs to deal with is little piece of the problem,
build will stitch them all together to form the big picture.

To reduce the amount of storage required, build goes to some length to ensure that
each object (target or component file) is represented in the lattice by a single node. Build
keeps track of what buildfiles have been processed to avoid revisiting buildfiles reached

5 GNU make supports multi-target rules.

Proceedings from the NECDC 2004

Reus, J.F.

through different paths. In addition most of the algorithms used by build operate in a O(n)
fashion (where n is the number of nodes in the lattice).

Timing results for building totebag
The benchmark used to test build was totebag, a complex meta-project with a rather

large source directory tree containing a large number of products: libraries, applications
and scripts. To construct and install everything build starts with a single top-level
buildfile and through inclusion ends up processing 1160 buildfiles containing: 111308
macro definitions and 23382 rules, 75533 macros expansions are made (many nested).
The dependency lattice contains 25043 nodes joined by 114067 edges with a maximum
depth of 27 levels. This is clearly a BIG problem but build deals well with it. Most real
applications of build are more reasonable.

The following table shows the amount of time build spends performing a number of
internal activities. The two most interesting cases are shown: the “worst” case, where
everything must be reconstructed, and the “best” case, where everything is up to date.
Note that in the best case all intermediate objects where removed before the test. All
performance testing was done on a 500 MHz Pentium 3 laptop with a 5400-RPM disk
running Linux. All times in Table 1 are expressed in seconds.

Table 1. Performance by activity

 reading
(sec)

processing
(sec)

work (sec) total (sec)

building everything 37.60 30.77 1477.48 1545.85

building nothing 37.39 24.23 0.00 61.62

The first column is the time that build takes to read, perform macro expansion, and
construct the raw dependency lattice. The second column is the time build takes to
analyze the lattice. This includes the time build takes to stat the various file system
objects to determine if they exist and if they are up to date. The sum of first and second
columns generally constitutes the overhead of the build process. The third column is the
time taken by commands to bring things up to date.

As expected in the first row build had to go through the maximum amount of work
and dispatch many commands. This is the worst case on time but best case for overhead
ratio (overhead work vs. dispatched work). Note that the work column dominates the time
taken. The second row is where everything has been constructed so build will no work to
dispatch and is so dominated by columns one and two (overhead). This is the best case for
overall time but gives poor overhead ratio, all of the time was spent on overhead work.

Proceedings from the NECDC 2004

Reus, J.F.

Performance vs. buildfile size
A number of individual products within the totebag meta-project have been processed

with the intent of gaining some sort of understanding of how build’s performance varies
by the number of rules, objects, and relations6. The following figures illustrate the result
of a series of 564 tests. Each test was arranged so that the desired product was already up
to date, so all of the time spent is on overhead work7. The tests were chosen with problem
sizes ranging over 4 orders of magnitude.

Fig 1. Log-log plot of time vs. number of rules.

Each of the plots was done in a log-log fashion so as to understand the exponent of
the relationship between the factor (number of rules, objects, or relationships) and the
time taken. Each point represents one of the many test problems. Note that in each of the
plots the slope of the trend line is less than 1-to-1. This implies that the time performance
may actually be slightly sublinear with the number of rules, objects, and relations. No
claim is actually made for sublinear performance as timing inaccuracies are not easily
predicted and the trend line fit isn’ t that accurate particularly at the low-end. But the
overall behavior is approximately linear with problem size over a wide range.

6 An object is a file, directory, or a phony such as install or clean; a vertex in the dependency lattice. A relationship is a
dependency between two objects; a single edge in the dependency lattice.

7 Having work to do such as compiles would mix compiler performance in to the test. The goal is to test build not the
compiler.

Proceedings from the NECDC 2004

Reus, J.F.

Fig 2. Log-log plot of time vs. number of objects.

Fig 3. Log-log plot of time vs. number of relations.

Proceedings from the NECDC 2004

Reus, J.F.

Compatibility
Unlike a number of other make replacements, build is generally make compatible.

Build was designed to be as compatible with make as possible. Buildfiles are very similar
to makefiles. Build can read and process most well written makefiles. Build supports
most of the GNU make extensions including GNU make’s sophisticated macro
processing extensions (macro functions). However build is not completely compatible
with make:

• Build doesn’ t supply any built-in suffix rules. Build does support suffix rules
but supplies no defaults. The buildfile developer must supply all needed suffix
rules. This hasn’ t proved much of a problem as most makefiles that rely on
suffix rules also supply their own definitions.

• A number of obscure macros such as $(@D), $(@F), … $(?F) are not
currently supported. There are better ways of performing these operations so
resolving this incompatibility has been a rather low priority. Implementation
of these shouldn’ t be hard and will be supplied in the near future.

• Some System-V make features such as $$@ are not supported at this time.

• Chaining of implicit (suffix) rules isn’ t well supported. Improvements that
provide proper support are being tested but are not ready yet.

• A few GNU macro functions are not supported yet:

o The call function isn’ t supported.

o The eval function isn’ t supported yet.

o The foreach function isn’ t supported yet.

o The shell function isn’ t supported yet.

o The value function isn’ t supported yet. But it doesn’ t appear to work
right in GNU make either.

o The wildcard function isn’ t supported yet.

• Archive members. The notation: archive(member …) which was introduced in
SunOS 4 make is not supported.

• Recursive builds work but are not recommended, as they are generally a poor
use of resources. A better method is to learn about and use build’s new include
mechanism.

In general any developer familiar with make can use build with little additional training.

Proceedings from the NECDC 2004

Reus, J.F.

Portability
Build is configured with a script generated by autokonf 8. It was written with

portability in mind and can be built and used on a diverse set of platforms:

• AIX – 4.3, 5.1, and 5.2 (power)

• FreeBSD – 4.x and 5.4 (Intel)

• HP-UX – 9.05, 10.20, and 11.0 (PA-RISC)

• Linux – 2.2.x and 2.4.x (alpha and Intel), SuSE, Redhat, and Mandrake
distributions.

• FreeBSD – 4.x and 5.4 (Intel)

• MAC OS-X (PowerPC)

• Windows – 98, NT 4.0, Win2000, and XP (Intel)

• SGI IRIX – 5.3 and 6.5 (mips)

• Tru64 – 3.2c, 4.0d, 4.0e, 5.0, 5.1, and 5.1b (alpha)

Build has been constructed, tested, and actually used on each of the above platforms.
Note that neither Cygwin nor MKS environments are needed to construct build on
Windows-like systems; the utility operates in a native fashion. Build has been constructed
on the above platforms using the following C compilers:

• GNU (gcc 2.x and 3.x) on AIX, FreeBSD, HP-UX, alpha and Intel Linux, and
Windows.

• HP native C compiler (cc) on HP-UX.

• HP/Compaq C compiler (cc) on Tru64 and alpha Linux

• IBM native C compiler (xlc) on AIX

• Intel C compiler (icc 7.x and 8.x) on Linux and Windows

• Microsoft Visual C (cl) on Windows

• Portland Group (pgcc) on Linux

• SGI native C compiler (cc) on IRIX

Currently an ANSI C compiler is required. It should be noted that few ANSI features
are actually required beyond support for function prototypes. A C compiler that meets the
1989 standard is generally sufficient.

8 Autokonf is a Perl-based replacement for GNU autoconf. It is implemented in Perl, uses macros written in Perl and
generates a configuration script in Perl.

Proceedings from the NECDC 2004

Reus, J.F.

Conclusions
Build has been shown to be an adequate replacement for make. Aside from a few

unresolved GNU make compatibility shortcomings, build is at least as capable as make
on all counts, and demonstrates significant improvements over make on several key
points:

• The ability to handle directory hierarchies.

• Encapsulation of projects with multiple applications and/or libraries.

• The automatic recognition of intermediate files and the ability to avoid
dispatching of unnecessary commands (minimizing work where possible).

• Correct parallel operation.

In addition build has demonstrated good scalability as the performance varies linearly
by problem size.

Future Work
While build works quite well and can meet the needs of most users there is still much

work to be done:

• GNU make compatibility. The remaining features supported by GNU make
but not by build should be implemented.

• Comparison of build’s performance relative to make. Much testing was done
to understand how build itself performs but no work has been done to
understand how make performs when doing the same tests.

• Automatic derivation of dependencies. A first cut would be a builddepends
utility in the same spirit as makedepends. An integrated mechanism would be
more desirable but requires a great deal more thought.

• Support for distributed builds. Where the source is distributed across a number
of possibly remote platforms. This needs a lot of thought even for defining
what is really desirable.

Proceedings from the NECDC 2004

Reus, J.F.

Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy by the

University of California, Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48.

References

Eggert, Paul. Si l ogi c I nc, Los Angel es, CA, pr i vat e communi cat i on (1984)

Hol t , Gar y . Makepp. 14 Dec. 2004.
 Sour ceFor ge. <ht t p: / / makepp. sour cef or ge. net >.

Kni ght , St even. Scons. 28 Sep. 2004.
 The Scons Foundat i on. <ht t p: / / www. scons. or g>.

Schilling, Jörg. Smake. FhG Fokus.
 <ht t p: / / www. f okus. f r aunhof er . de/ r esear ch/ cc/ ber l i os/ empl oyees/ j oer g. s

chi l l i ng/ pr i vat e/ smake. ht ml >.

Stallman, R. and McGrath, R, GNU make. 28 Jun. 2002. Fr ee Sof t war e
Foundat i on. <ht t p: / / www. gnu. or g/ sof t war e/ make/ manual / make. ht ml >.

Oram, A., and Talbott, S., Managing Projects with make, (O’Reilly & Associates, 1993).

DuBois, Paul., Software Portability with imake, (O’Reilly & Associates, 1994).

